Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1847340

ABSTRACT

In this study, humidified air dielectric barrier discharge (DBD) plasma was used to inactivate Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and bacteriophages in biofilms containing DNA, NaCl, carbohydrates, and proteins. The humidified DBD plasma was very effective in the inactivation of microbes in the (≤1.0 µm) biofilms. The number of surviving E. coli, S. aureus, and bacteriophages in the biofilms was strongly dependent on the constituent and thickness of the biofilms and was greatly reduced when the plasma treatment time increased from 5 s to 150 s. Our analysis shows that the UV irradiation was not responsible for the inactivation of microbes in biofilms. The short-lived RONS generated in the humidified air DBD plasma were not directly involved in the inactivation process; however, they recombined or reacted with other species to generate the long-lived RONS. Long-lived RONS diffused into the biofilms to generate very active species, such as ONOOH and OH. This study indicates that the geminated NO2 and OH pair formed due to the homolysis of ONOOH can cause the synergistic oxidation of various organic molecules in the aqueous solution. Proteins in the biofilm were highly resistant to the inactivation of microbes in biofilms, which is presumably due to the existence of the unstable functional groups in the proteins. The unsaturated fatty acids, cysteine-rich proteins, and sulfur-methyl thioether groups in the proteins were easily oxidized by the geminated NO2 and OH pair.


Subject(s)
Bacteriophages , Escherichia coli Infections , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Biofilms , Escherichia coli/physiology , Humans , Nitrogen Dioxide , Staphylococcus aureus/physiology
2.
J Am Chem Soc ; 143(43): 17891-17909, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1483091

ABSTRACT

The emergence of multi-drug-resistant pathogens threatens the healthcare systems world-wide. Recent advances in phototherapy (PT) approaches mediated by photo-antimicrobials (PAMs) provide new opportunities for the current serious antibiotic resistance. During the PT treatment, reactive oxygen species or heat produced by PAMs would react with the cell membrane, consequently leaking cytoplasm components and effectively eradicating different pathogens like bacteria, fungi, viruses, and even parasites. This Perspective will concentrate on the development of different organic photo-antimicrobials (OPAMs) and their application as practical therapeutic agents into therapy for local infections, wound dressings, and removal of biofilms from medical devices. We also discuss how to design highly efficient OPAMs by modifying the chemical structure or conjugating with a targeting component. Moreover, this Perspective provides a discussion of the general challenges and direction for OPAMs and what further needs to be done. It is hoped that through this overview, OPAMs can prosper and will be more widely used for microbial infections in the future, especially at a time when the global COVID-19 epidemic is getting more serious.


Subject(s)
Anti-Infective Agents/chemistry , Drug Design , Phototherapy/methods , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria/drug effects , Biofilms/drug effects , Biofilms/radiation effects , Coloring Agents/chemistry , Coloring Agents/pharmacology , Equipment and Supplies/microbiology , Equipment and Supplies/virology , Escherichia coli/drug effects , Escherichia coli/physiology , Eye Diseases/drug therapy , Eye Diseases/pathology , Fungi/drug effects , Graphite/chemistry , Light , Nanoparticles/chemistry , Nanoparticles/toxicity , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Quantum Theory , Reactive Oxygen Species/metabolism , Viruses/drug effects
3.
J Immunol ; 207(7): 1848-1856, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1377034

ABSTRACT

Immune cell responses are strikingly altered in patients with severe coronavirus disease 2019 (COVID-19), but the immunoregulatory process in these individuals is not fully understood. In this study, 23 patients with mild and 22 patients with severe COVID-19 and 6 asymptomatic carriers of COVID-19 were enrolled, along with 44 healthy controls (HC). Peripheral immune cells in HC and patients with COVID-19 were comprehensively profiled using mass cytometry. We found that in patients with severe COVID-19, the number of HLA-DRlow/- monocytes was significantly increased, but that of mucosal-associated invariant T (MAIT) cells was greatly reduced. MAIT cells were highly activated but functionally impaired in response to Escherichia coli and IL-12/IL-18 stimulation in patients with severe COVID-19, especially those with microbial coinfection. Single-cell transcriptome analysis revealed that IFN-stimulated genes were significantly upregulated in peripheral MAIT cells and monocytes from patients with severe COVID-19. IFN-α pretreatment suppressed MAIT cells' response to E. coli by triggering high levels of IL-10 production by HLA-DRlow/--suppressive monocytes. Blocking IFN-α or IL-10 receptors rescued MAIT cell function in patients with severe COVID-19. Moreover, plasma from patients with severe COVID-19 inhibited HLA-DR expression by monocytes through IL-10. These data indicate a unique pattern of immune dysregulation in severe COVID-19, which is characterized by enrichment of suppressive HLA-DRlow/- monocytes associated with functional impairment of MAIT cells through the IFN/IL-10 pathway.


Subject(s)
COVID-19/immunology , Escherichia coli Infections/immunology , Escherichia coli/physiology , Interleukin-10/metabolism , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Asymptomatic Diseases , Cells, Cultured , Child , Coinfection , Disease Progression , Female , Humans , Immune Tolerance , Lymphocyte Activation , Male , Middle Aged , Severity of Illness Index , Young Adult
4.
Appl Environ Microbiol ; 86(23)2020 11 10.
Article in English | MEDLINE | ID: covidwho-1020865

ABSTRACT

Emerging outbreaks of airborne pathogenic infections worldwide, such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, have raised the need to understand parameters affecting the airborne survival of microbes in order to develop measures for effective infection control. We report a novel experimental strategy, TAMBAS (tandem approach for microphysical and biological assessment of airborne microorganism survival), to explore the synergistic interactions between the physicochemical and biological processes that impact airborne microbe survival in aerosol droplets. This innovative approach provides a unique and detailed understanding of the processes taking place from aerosol droplet generation through to equilibration and viability decay in the local environment, elucidating decay mechanisms not previously described. The impact of evaporation kinetics, solute hygroscopicity and concentration, particle morphology, and equilibrium particle size on airborne survival are reported, using Escherichia coli MRE162 as a benchmark system. For this system, we report that (i) particle crystallization does not directly impact microbe longevity, (ii) bacteria act as crystallization nuclei during droplet drying and equilibration, and (iii) the kinetics of size and compositional change appear to have a larger effect on microbe longevity than the equilibrium solute concentration.IMPORTANCE A transformative approach to identify the physicochemical processes that impact the biological decay rates of bacteria in aerosol droplets is described. It is shown that the evaporation process and changes in the phase and morphology of the aerosol particle during evaporation impact microorganism viability. The equilibrium droplet size was found to affect airborne bacterial viability. Furthermore, the presence of Escherichia coli MRE162 in a droplet does not affect aerosol growth/evaporation but influences the dynamic behavior of the aerosol by processing the culture medium prior to aerosolization, affecting the hygroscopicity of the culture medium; this highlights the importance of the inorganic and organic chemical composition within the aerosolized droplets that impact hygroscopicity. Bacteria also act as crystallization nuclei. The novel approach and data have implications for increased mechanistic understanding of aerosol survival and infectivity in bioaerosol studies spanning the medical, veterinary, farming, and agricultural fields, including the role of microorganisms in atmospheric processing and cloud formation.


Subject(s)
Aerosols , Air Microbiology , Coronavirus Infections/transmission , Escherichia coli Infections/transmission , Infection Control/methods , Pneumonia, Viral/transmission , Betacoronavirus/physiology , COVID-19 , Cough/microbiology , Crystallization , Escherichia coli/physiology , Humans , Microbial Viability , Pandemics , Particle Size , SARS-CoV-2 , Sneezing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL